Q. No. 1 – 25 Carry One Mark Each

Q.1 The number of emails received on six consecutive days is 11, 9, 18, 18, 4 and 15, respectively. What are the median and the mode for these data?

(A) 18 and 11, respectively
(B) 13 and 18, respectively
(C) 13 and 12.5, respectively
(D) 12.5 and 18, respectively

Explanations:-

B

By arranging the data in ascending order, the data is 4, 9, 11, 15, 18, 18

Median = \(\frac{11 + 15}{2} = 13 \)

Mode=Maximum number of times occurred value =18

Q.2 For two rolls of a fair die, the probability of getting a 4 in the first roll and a number less than 4 in the second roll, up to 3 digits after the decimal point, is

Explanations:-

We known that, if two dice are thrown then total number of out comes =6²=39

Let E be the event of getting 4 in the first roll and a number less than 4 is the second.

Then favorable cases to occur E are (4,1) (4,2), (4,3)

Required probability = \(\frac{3}{36} = \frac{1}{12} = 0.0833 \)

Q.3 Which of the following statements are TRUE?

P. The eigen values of a symmetric matrix are real
Q. The value of the determinant of an orthogonal matrix can only be +1
R. The transpose of a square matrix A has the same eigen values as those of A
S. The inverse of an ‘n × n’ matrix exists if and only if the rank is less than ‘n’

(A) P and Q only
(B) P and R only
(C) Q and R only
(D) P and S only

Explanations:-

B

P and R are true
Q.4 Evaluate
\[\int \frac{dx}{e^x - 1} \]
(Note: C is a constant of integration)

(A) \(\frac{e^x}{e^x - 1} + C \)

(B) \(\frac{\ln(e^x - 1)}{e^x} + C \)

(C) \(\ln\left(\frac{e^x}{e^x - 1}\right) + C \)

(D) \(\ln\left(1 - e^{-x}\right) + C \)

Explanations:-

D

Given integral is \(\int \frac{dx}{e^x - 1} \)

\[= \int \frac{e^{-x}}{1 - e^{-x}} \, dx = \log(1 - e^x) + C \]

Q.5 A gaseous system contains H₂, I₂, and HI, which participate in the gas-phase reaction

\[2 \text{HI} \rightarrow \text{H}_2 + \text{I}_2 \]

At a state of reaction equilibrium, the number of thermodynamic degrees of freedom is

Explanations:-

As we know \(F = C - P + 2 \)

Here \(C = 2, P = 1 \) so \(F = 2 - 1 + 2 \)

\(F = 3 \)

Q.6 The thermodynamic state of a closed system containing a pure fluid changes from \((T_1, p_1)\) to \((T_2, p_2)\), where \(T \) and \(p \) denote the temperature and pressure, respectively. Let \(Q \) denote the heat absorbed (> 0 if absorbed by the system) and \(W \) the work done (> 0 if done by the system). Neglect changes in kinetic and potential energies. Which one of the following is CORRECT?

(A) \(Q \) is path-independent and \(W \) is path-dependent

(B) \(Q \) is path-dependent and \(W \) is path-independent

(C) \((Q - W) \) is path-independent

(D) \((Q+W) \) is path-independent

Explanations:-

\(C \)

\(Q - W = \Delta U \)

\(\Delta U \) which solely depends only on initial and final temperature. It is independent of path.
Q.7 An equation of state is explicit in pressure \(p \) and cubic in the specific volume \(v \). At the critical point 'c', the isotherm passing through 'c' satisfies

(A) \(\frac{\partial p}{\partial v} < 0, \frac{\partial^2 p}{\partial v^2} = 0 \)

(B) \(\frac{\partial p}{\partial v} > 0, \frac{\partial^2 p}{\partial v^2} < 0 \)

(C) \(\frac{\partial p}{\partial v} = 0, \frac{\partial^2 p}{\partial v^2} < 0 \)

(D) \(\frac{\partial p}{\partial v} = 0, \frac{\partial^2 p}{\partial v^2} = 0 \)

Explanations:

D
At critical point

\(\left(\frac{\partial^2 p}{\partial v^2} \right)_t = \left(\frac{\partial p}{\partial v} \right)_t = 0 \)

Q.8 The units of the isothermal compressibility are

(A) \(m^{-3} \) (B) \(Pa^{-1} \) (C) \(m^3 Pa^{-1} \) (D) \(m^{-3} Pa^{-1} \)

Explanations:

B

\(\beta, \) Isothermal compressibility = \(\frac{-1}{V} \left(\frac{dV}{dP} \right)_t \)

Unit of \(\beta \) is Pascal\(^{-1} \)

Q.9 An open tank contains two immiscible liquids of densities (800 kg/m\(^3\) and 1000 kg/m\(^3\)) as shown in the figure. If \(g = 10 \) m/s\(^2\), under static conditions, the gauge pressure at the bottom of the tank in Pa is

Explanations:

\(P_{bottom} = (2) \rho_2 \times 10 + (1) \rho_1 \times 10 \)
\(= (2 \times 800 \times 10) + (1000 \times 10) \)
\(= 16000 + 10000 = 26000 \) Pa

Q.10 The apparent viscosity of a fluid is given by

\(0.007 \left(\frac{dV}{dy} \right)^{0.3} \) where \(\left(\frac{dV}{dy} \right) \) is the velocity gradient. The fluid is

(A) Bingham plastic (B) Dilatants (C) Pseudoplastic (D) Thixotropic

Explanations:

B
For non Newtonian fluid

\(\tau = \eta \frac{du}{dy} = k \frac{du}{dy} \left(\frac{du}{dy} \right)^{n-1} \)
Here \(\eta \) is apparent viscosity

\[
\eta = K \left(\frac{du}{dy} \right)^{n-1} = 0.007 \left(\frac{du}{dy} \right)^{0.3}
\]

\(\eta - 1 = 0.3 \Rightarrow \eta = 1.3 \)

\(n > 1 \), therefore fluid is dilatent

Q.11 The mass balance for a fluid with density \(\rho \) and velocity vector \(\vec{V} \) is

(A) \(\frac{\partial \rho}{\partial t} + \nabla(\rho \vec{V}) = 0 \)

(B) \(\frac{\partial \rho}{\partial t} + \vec{V} \cdot \nabla\rho = 0 \)

(C) \(\frac{\partial \rho}{\partial t} + \rho \nabla \vec{V} = 0 \)

(D) \(\frac{\partial \rho}{\partial t} - \vec{V} \cdot \nabla\rho = 0 \)

Explanations:
A
Equation of continuity, \(\frac{\partial \rho}{\partial t} + \nabla(\rho \vec{u}) = 0 \)

Q.12 An incompressible Newtonian fluid, filled in an annular gap between two concentric cylinders of radii \(R_1 \) and \(R_2 \) as shown in the figure, is flowing under steady state conditions. The outer cylinder is rotating with an angular velocity of \(\Omega \) while the inner cylinder is stationary. Given that \(R_2 - R_1 \leq R \), the profile of the \(\theta \) – component of the velocity \(V_\theta \) can be approximated by

(A) \(R_2 \Omega \)

(B) \(\frac{(r - R_2)}{(R_2 - R_1)} r \Omega \)

(C) \(\frac{(r + R_1)}{(R_2 + R_1)} R_1 \Omega \)

(D) \(\frac{(r - R_1)}{(R_2 - R_1)} R_2 \Omega \)

Explanations:
D

Q.13 For a Newtonian fluid flowing in a circular pipe under steady state conditions in fully developed laminar flow, the Fanning friction factor is

(A) \(0.046 \text{Re}^{-0.2} \)

(B) \(0.0014 + \frac{0.125}{\text{Re}^{0.32}} \)

(C) \(\frac{16}{\text{Re}} \)

(D) \(\frac{24}{\text{Re}} \)

GATEFORUM- India’s No.1 institute for GATE training
Explanations:-

C
For fully developed laminar flow

Fanning friction function, \(f = \frac{16}{R_e} \)

Q.14 In the Tyler standard screen scale series, when the mesh number increases from 3 mesh to 10 mesh, then

(A) the clear opening decreases

(B) the clear opening increases

(C) the clear opening is unchanged

(D) the wire diameter increases

Explanations:-

A
Here mesh number increases

As we know clear openings \(\propto \frac{1}{\text{mesh number}} \)

Clear opening decreases

Q.15 Taking the acceleration due to gravity to be 10 m/s², the separation factor of a cyclone 0.5 m in diameter and having a tangential velocity of 20 m/s near the wall is_____

Explanations:-

Separation factor = \(\frac{V^2}{rg} = \frac{20^2}{(0.2 \times 10)} = 160 \)

Q.16 The effectiveness of a heat exchanger in the \(\varepsilon – \text{NTU} \) method is defined as

(A) increase in temperature of the cold fluid
decrease in temperature of the hot fluid

(B) actual exit temperature attained by the cold fluid
maximum exit temperature attained by the cold fluid

(C) actual exit temperature attained by the hot fluid
minimum exit temperature attainable by the hot fluid

(D) actual heat transfer rate
maximum possible heat transfer rate from hot fluid to cold fluid

Explanations:-

D
Effectiveness = \(\frac{\text{Actual heat transfer}}{\text{Maximum heat transfer}} \)

Q.17 In a pool boiling experiment, the following phenomena were observed.
P. Natural convection
Q. Film boiling
R. Transition boiling
S. Nucleate boiling
What was the CORRECT sequence of their occurrence?
(A) P, Q, R, S
(B) S, R, Q, P
(C) Q, R, P, S
(D) P, S, R, Q

Explanations:
D
Sequence is
(P) Natural convection
(S) Nucleate convection
(R) Transition boiling
(Q) Film boiling

Q.18 A hole of area 1 cm\(^2\) is opened on the surface of a large spherical cavity whose inside temperature is maintained at 727 °C. The value of Stefan-Boltzmann constant is \(5.67 \times 10^{-8} \text{ W/m}^2\text{-K}^4\). Assuming black body radiation, the rate at which the energy is emitted (in W) by the cavity through the hole, up to 3 digits after the decimal point, is

Explanations:
As we know
\[Q = \sigma A T^4 e \]
\[e = 1, \text{ for black body, } \sigma = 5.67 \times 10^{-8} \text{ W/m}^2\text{-K}^4 \]
\[A = 1 \text{cm}^2 = 10^{-4} \text{m}^2, \ T = 273 + 727 = 1000 \text{k} \]
\[Q = (5.67 \times 10^{-9})(10^{-4})(1000)^4 \Rightarrow Q = 5.67 \text{ W} \]

Q.19 The packing of an existing absorption tower is replaced with a new type of packing. The height of the packing and the inlet conditions are maintained the same as before. Tests reveal that the number of transfer units is lower than before. This indicates that the tower with the new packing, when compared to that with the old packing, will
(A) have a higher rate of absorption of the solute from the gas stream
(B) have a lower rate of absorption of the solute from the gas stream
(C) have the same rate of absorption of the solute from the gas stream
(D) have a lower height of transfer unit

Explanations:
B
Here NTU is lowered which suggests that new packing have a lower rate of absorption of solute from the gas stream in comparison to old packing.

Q.20 A wet solid is dried over a long period of time by unsaturated air of nonzero constant relative humidity. The moisture content eventually attained by the solid is termed as the
(A) unbound moisture content (B) bound moisture content
C) free moisture content (D) equilibrium moisture content

Explanations:-

D
Equilibrium moisture is attained by the solid after drying over a long period of time.

Q.21 The exit age distribution for a reactor is given by $E(t) = \delta(t - 4)$, where t is in seconds. A first order liquid phase reaction $(k = 0.25 \text{ s}^{-1})$ is carried out in this reactor under steady state and isothermal conditions. The mean conversion of the reactant at the exit of the reactor, up to 2 digits after the decimal point, is

Explanations:-

General equation for first order

$$1 - \overline{X}_A = \int_0^\infty E e^{kt} \, dt$$

Here, $E = \delta(t - 4)$

$$1 - \overline{X}_A = \int_0^\infty e^{-k} \delta(t - 4) \, dt \Rightarrow 1 - \overline{X}_A = e^{-4k}$$

$K = 0.25 \text{ s}^{-1}$

$$1 - \overline{X}_A = e^{-4(0.25)} \Rightarrow \overline{X}_A = 0.632$$

Q.22 An isothermal liquid phase zero order reaction $A \rightarrow B$ $(k = 0.5 \text{ mol/m}^3\text{-s})$ is carried out in a batch reactor. The initial concentration of A is 2 mol/m^3. At 3 seconds from the start of the reaction, the concentration of A in mol/m3 is ____________

Explanations:-

For zero order reaction

$$C_A_0 - C_A = Kt$$

$$C_A = C_A_0 - Kt = 2 - (0.5 \times 3) \Rightarrow C_A = 0.5 \text{ mol/m}^3$$

Q.23 The overall rates of an isothermal catalytic reaction using spherical catalyst particles of diameters 1 mm and 2 mm are r_{A1} and r_{A2} (in mol (kg-catalyst)$^{-1} \text{ h}^{-1}$), respectively. The other physical properties of the catalyst particles are identical. If pore diffusion resistance is very high, the ratio r_{A2}/r_{A1} is ____________
Explanations:-

For high pore diffusion resistance

Rate of reaction \(\propto \frac{1}{\text{diameter}} \)

\[\frac{d_1}{d_2} = \frac{1}{2} = 0.5 \]

Q.24 In the manufacture of sulphuric acid by the contact process, the catalytic oxidation of \(\text{SO}_2 \) is carried out in multiple stages mainly to
(A) increase the reaction rate by providing inter-stage heating
(B) increase the overall conversion by providing inter-stage heating
(C) increase the overall conversion by providing inter-stage cooling
(D) decrease the overall conversion by removing sulphur trioxide between stages

Explanations:-

C
To increase the overall conversion interstage cooling is provided.

Q.25 Match the following.

<table>
<thead>
<tr>
<th>Group 1</th>
<th>Group 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P) Viscosity</td>
<td>(1) Pyrometer</td>
</tr>
<tr>
<td>(Q) Pressure</td>
<td>(2) Hot wire anemometer</td>
</tr>
<tr>
<td>(R) Velocity</td>
<td>(3) Rheometer</td>
</tr>
<tr>
<td>(S) Temperature</td>
<td>(4) Piezoelectric element</td>
</tr>
</tbody>
</table>

(A) P-4, Q-3, R-1, S-2
(B) P-3, Q-4, R-2, S-1
(C) P-3, Q-4, R-1, S-2
(D) P-4, Q-3, R-2, S-1

Explanations:-

B

(P) Viscosity - 3. Rheometer
(Q) Pressure - 4. Piezoelectric element
(R) Velocity - 2. Hot wire anemometer
(S) Temperature - 1. Pyrometer

(P)-3, (Q)-4, (R)-2, (S)-1

Q. No. 26 – 51 Carry Two Marks Each

Q.26 For the function

\[f(z) = \frac{1}{(2 - z)(z + 2)} \]

The residue at \(z=2 \) is__________

Explanations:-

Given functions \(f(z) = \frac{1}{(2 - z)(z + 2)} \)

Poles are \(z=2 \) and \(z=-2 \)
Required answer is residue at $z=2$

$Z=2$ is a simple pole, therefore

Residue at $z=2 = \lim_{z \to 2} \frac{1}{(z-2)(z+2)} = -\lim_{z \to 2} \frac{1}{(2-z)(z+2)} = -\frac{1}{4} = -0.25$

Q.27 The solution of the differential equation

\[
\frac{dy}{dx} - y^2 = 0 , \text{ given } y = 1 \text{ at } x = 0 \text{ is}
\]

(A) $\frac{1}{1+x}$
(B) $\frac{1}{1-x}$
(C) $\frac{1}{(1-x)^2}$
(D) $\frac{x^3}{3} + 1$

Explanations:-

B

Given DE is $\frac{dy}{dx} - y^2 = 0$ with $y=1$ at $x=0$; $\frac{dy}{dx} = y^2$

$\Rightarrow \frac{1}{y^2} \ dy = dx$ (variable seperable)

Solution is $\int \frac{1}{y^2} \ dy = \int dx + C$;

$-\frac{1}{y} = x + C$

By using $y = 1$ at $x = 0 \Rightarrow -1 = 0 + c \Rightarrow C = -1$

$-\frac{1}{y} = x - 1 \Rightarrow \frac{1}{y} = 1 - x \therefore y = \frac{1}{1-x}$

Q.28 The solution of the differential equation

\[
\frac{d^2y}{dx^2} - \frac{dy}{dx} + 0.25y = 0 , \text{ given } y = 0 \text{ at } x = 0 \text{ and } \frac{dy}{dx} = 1 \text{ at } x = 0 \text{ is}
\]

(A) $xe^{0.5x} - xe^{-0.5x}$
(B) $0.5xe^x - 0.5xe^{-x}$
(C) $xe^{-0.5x}$
(D) $-xe^{0.5x}$

Explanations:-

C

\[
\frac{d^2y}{dx^2} - \frac{dy}{dx} + 0.25y = 0 , \ y = 0 \text{ at } x = 0 \text{ and } \frac{dy}{dx} = 1 \text{ at } x = 0
\]

A.E is $m^2 - m + 0.25 = 0$

$m^2 - m + \frac{1}{4} = 0 \Rightarrow \left(m - \frac{1}{2}\right)^2 = 0 \Rightarrow m = \frac{1}{2}$

$\therefore y_c = \left(4 + c_2x\right)e^{\frac{1}{2}x} \ ; \ y_p = 0$

$y = y_c + y_p = \left(4 + c_2x\right)e^{\frac{1}{2}x}$
From the condition $y=0$ at $x=0,$

$$0 = [c_1 + c_2(0)] e^0 \Rightarrow 4 = 0$$

To use the second condition differentiate $x,$

$$\frac{dy}{dx} = (c_1 + c_2 x) \frac{1}{2} e^{\frac{1}{2}x} + e^{\frac{1}{2}x} c_2$$

$$1 = (c_1 + c_2 0) \frac{1}{2} e^0 + e^0 c_2$$

$$1 = 0 \left(\frac{1}{2} \right) + c_2 \Rightarrow c_2 = 1$$

$$y = xe^{\frac{1}{2}x}; \therefore y = xe^{0.5x}$$

Q.29 The value of the integral

$$\int_0^{0.5} e^{-x^2} \, dx$$

evaluated by Simpson’s rule using 4 subintervals (up to 3 digits after the decimal point) is______

Explanations:-

Simpson’s rule is

$$\int_a^b f(x) \, dx = \frac{h}{3} \left[(y_0 + y_n) + 4(\text{sum of of } y_i) + 23 \text{ remains} \right]$$

$$a = 0.1 \quad b = 0.5 \quad h = 4$$

$$h = \frac{b - a}{n} = \frac{0.5 - 0.1}{4} = \frac{0.4}{4} = 0.1$$

<table>
<thead>
<tr>
<th>x</th>
<th>x_0</th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>0.2</td>
<td>0.3</td>
<td>0.4</td>
<td>0.5</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>x^3</th>
<th>0.001</th>
<th>0.008</th>
<th>0.027</th>
<th>0.064</th>
<th>0.125</th>
</tr>
</thead>
<tbody>
<tr>
<td>$-x^2$</td>
<td>-0.001</td>
<td>-0.008</td>
<td>-0.027</td>
<td>-0.064</td>
<td>-0.125</td>
</tr>
<tr>
<td>$y = e^{-x^2}$</td>
<td>0.999</td>
<td>0.992</td>
<td>0.973</td>
<td>0.938</td>
<td>0.882</td>
</tr>
<tr>
<td>y_0</td>
<td>y_1</td>
<td>y_2</td>
<td>y_3</td>
<td>y_4</td>
<td></td>
</tr>
</tbody>
</table>

$$\int_0^{0.5} e^{-x^2} \, dx = \frac{0.1}{3} \left[(y_0 + y_n) + 4(y_1 + y_3) + 2y_2 \right]$$

$$= \frac{0.1}{3} \left[(0.999 + 0.882) + 4(0.992 + 0.938) + 2(0.973) \right]$$

$$= \frac{0.1}{3} \left[1.881 + 7.72 + 1.946 \right]$$

$$= \frac{0.1}{3} \left[11.547 \right] = 0.1 \times 3.849 = 0.3849$$
Q.30 In a process occurring in a closed system F, the heat transferred from F to the surroundings E is 600 J. If the temperature of E is 300 K and that of F is in the range 380 - 400 K, the entropy changes of the surroundings (ΔS_E) and system (ΔS_F), in J/K, are given by

(A) ΔS_E = 2, ΔS_F = -2
(B) ΔS_E = -2, ΔS_F = 2
(C) ΔS_E = 2, ΔS_F < -2
(D) ΔS_E = 2, ΔS_F > -2

Explanations:-

\[Q = \text{Heat transferred from system to surrounding} \]
\[T_{\text{surr}} = 300 \text{K}, \text{ Heat transferred from system to surrounding} \]
\[\text{Entropy charge of surrounding, } \Delta S_E = \frac{Q}{T_{\text{surr}}} = \frac{600}{300} = 2 \text{ J/k} \]

As we know \(\Delta S_{\text{universe}} \geq 0 \) or
\[\Delta S_E + \Delta S_F \geq 0 \]
\[\Delta S_F > \Delta S_E \Rightarrow \Delta S_F > -\frac{2}{k} \]

Q.31 A binary liquid mixture is in equilibrium with its vapor at a temperature \(T = 300 \text{ K} \). The liquid mole fraction \(x_1 \) of species 1 is 0.4 and the molar excess Gibbs free energy is 200 J/mol. The value of the universal gas constant is 8.314 J/mol-K, and \(\gamma_i \) denotes the liquid-phase activity coefficient of species i. If \(\ln (\gamma_1) = 0.09 \), then the value of \(\ln (\gamma_2) \), up to 2 digits after the decimal point, is

Explanations:-

As we know
\[\frac{G_X}{RT} = x_1 \ln \gamma_1 + x_2 \ln \gamma_2 \]
\[x_2 = 1 - x_1 = 1 - 0.4 = 0.6 \]
\[\frac{200}{8.314(300)} = (0.4)(0.09) + (0.6) \ln \gamma_2 \]
\[\therefore \ln \gamma_2 = 0.0736 \]

Q.32 Water (density 1000 kg/m^3) is flowing through a nozzle, as shown below and exiting to the atmosphere. The relationship between the diameters of the nozzle at locations 1 and 2 is \(D_1 = 4 D_2 \). The average velocity of the stream at location 2
is 16 m/s and the frictional loss between location 1 and location 2 is 10000 Pa. Assuming steady state and turbulent flow, the gauge pressure in Pa, at location 1 is ___.

Explanations:-

\[
Q = A_1V_1 = A_2V_2 \\
V_1 = \frac{V_2A_2}{A_1} = \frac{V_2A_2}{A_1} = V_2 \left(\frac{D_2}{D_1} \right)^2 = 16 \left(\frac{1}{4} \right)^2 = 1 \text{ m/s}
\]

Apply Bernoulli’s Equation

\[
\frac{P_1}{\rho g} + Z_1 + \frac{V_1^2}{2g} = \frac{P_2}{\rho g} + Z_2 + \frac{V_2^2}{2g}
\]

\[
Z_1 = Z_2 \Rightarrow \frac{P_2}{\rho g} + \frac{V_2^2 - V_1^2}{2g} = \frac{10000}{(1000)(9.8)} + \frac{(16)^2 - 1}{2(9.8)} = P_1 = 137500 \text{ Pa}
\]

Q.33 In the elutriation leg of a commercial crystallizer containing a mixture of coarse and very fine crystals of the same material, a liquid is pumped vertically upward. The liquid velocity is adjusted such that it is slightly lower than the terminal velocity of the coarse crystals only. Hence

(A) the very fine and coarse crystals will both be carried upward by the liquid
(B) the very fine and coarse crystals will both settle at the bottom of the tube
(C) the very fine crystals will be carried upward and the coarse crystals will settle
(D) the coarse crystals will be carried upward and the very fine crystals will settle

Explanations:-

C

If velocity \(\langle \) Terminal velocity then the very fine crystals will be carried upward and the coarse particle will settle.

Q.34 100 ton/h of a rock feed, of which 80% passed through a mesh size of 2.54 mm, were reduced in size such that 80% of the crushed product passed through a mesh size of 1.27 mm. The power consumption was 100 kW. If 100 ton/h of the same material is similarly crushed from a mesh size of 5.08 mm to a mesh size of 2.54 mm, the power consumption (in kW, to the nearest integer) using Bond’s law, is _____.

Explanations:-
Q.35 Calculate the heat required (in kJ, up to 1 digit after the decimal point) to raise the temperature of 1 mole of a solid material from 100°C to 1000°C. The specific heat \((C_p)\) of the material (in J/mol-K) is expressed as \(C_p = 20 + 0.005T\), where \(T\) is in K. Assume no phase change.

Explanations:-

\[
T_2 = (1000 + 273) = 373K, \quad T_1 = (100 + 273) = 373K
\]

As we know

\[
dQ = C_p dT
\]

\[
\int_0^Q dQ = \int_{T_1}^{T_2} (20 + 0.005T) dT
\]

\[
Q = 20(T_2 - T_1) + \frac{(0.005)}{2} (T_2^2 - T_1^2) = 20(1273 - 373) + \frac{(0.005)(1273^2 - 373^2)}{2}
\]

\[
= 21703.5 J \quad \Rightarrow \quad Q = 21.703 kJ
\]

Q.36 In a double pipe counter-current heat exchanger, the temperature profiles shown in the figure were observed. During operation, due to fouling inside the pipe, the heat transfer rate reduces to half of the original value. Assuming that the flow rates and the physical properties of the fluids do not change, the LMTD (in °C) in the new situation is

Explanations:-

\[
C
\]

\[
\Delta T_1 = 100 - 80 = 20°C; \quad \Delta T_2 = 60 - 40 = 20°C
\]

As \(\Delta T_1 = \Delta T_2\)

\[
\Delta T_{mtd} = \frac{\Delta T_1 + \Delta T_2}{2} = \frac{20 + 20}{2} = 20°C
\]

\[
\Delta T_{mtd} = 20°C \quad \Rightarrow \quad Q \propto \Delta T_{mtd}
\]

\[
\frac{Q_2}{Q_1} = \frac{\Delta T_{mtd2}}{\Delta T_{mtd1}} = \frac{1}{2} \quad \Rightarrow \quad \Delta T_{mtd} = \frac{20}{2} = 10°C
\]
Q.37 The vapor-liquid equilibrium curve of a binary mixture A-B, may be approximated by a linear equation over a narrow range of liquid mole fractions (0.2 < x_A < 0.3) as follows

\[y_A = 1.325x_A + 0.121 \]

Here \(y_A \) is the mole of fraction of A in the vapor. 100 moles of a feed \((x_{A,F} = 0.28) \) is batch distilled to a final residue \((x_{A,W} = 0.28) \). Using the Rayleigh equation, the number of moles of the residue left behind in the distillation unit, up to 2 digits after the decimal point, is ____

Explanations:-

\[y_A^* = 1.325x_A + 0121, \quad F = 100 \text{ moles} \]
\[x_{A,F} = 0.28, \quad x_{A,W} = 0.2 \]

As we know Rayleigh Equation

\[\ell_n F W = \int_{x_A}^{x} \frac{dx}{y_A - x_A} \]
\[\ell_n F W = \int_{0.2}^{0.28} \frac{dx}{1.325x_A + 0.121 - x_A} \]

We get \(W = 66.84 \) moles

Q.38 A crosscurrent cascade of N ideal stages is used to treat a feed stream of molar flow rate \(E \). The feed stream contains a solute which is to be recovered by a pure solvent having a molar flow rate \(S \). The solvent is divided equally between these \(N \) stages. The linear equilibrium curve relating the mole fractions \(x \) and \(y^* \) of the solute in the raffinate and the extract respectively, is given by \(y^* = mx \). Assume dilute conditions. The ratio of the solute mole fraction in the original feed to that in the exit raffinate stream i.e. \((x_0 / x_n) \) is given by

(A) \(1 + \left(\frac{mS}{NE} \right)^N \)
(B) \(1 + \left(\frac{mS}{mE} \right)^N \)
(C) \(1 + \left(\frac{NS}{mE} \right)^N \)
(D) \(1 + \left(\frac{mE}{Ns} \right)^N \)

Explanations:-

A

For Cross Current Cascade Equilibrium relation is

\[\frac{x_0}{x_n} = 1 + \left(\frac{ms}{NE} \right)^N \]

Q.39 A study was conducted in which water was pumped through cylindrical pipes made of a sparingly soluble solid. For a given pipe and certain flow conditions, the mass transfer coefficient \(k_c \) has been calculated as 1 mm/s using the correlation; \(\text{Sh} = 0.025 \text{ Re}^{0.6} \text{ Sc}^{0.33} \)
If the velocity of the fluid and the diameter of the pipe are both doubled, what is the new value of k_c in mm/s, up to 2 digits after the decimal point?

Explanations:

\[A \]

\[S_h = 0.025(Re)^{0.6} \quad (Sc)^{0.33} \]

\[\frac{K_d}{D_{AB}} = 0.025 \left(\frac{dV}{\mu_k} \right)^{0.6} \left(\frac{\mu_k}{D_{AB}} \right)^{0.33} \]

D_{AB}, μ_k remains same

\[\frac{K_2d_2}{K_1d_1} = \left(\frac{d_2}{d_1} \right)^{0.6} \Rightarrow \frac{d_2}{d_1} = 2, \quad \frac{V_2}{V_1} = 0.6 \]

\[k_2(2) \quad k_1 = 4^{0.6}, \quad k_2 = \frac{4^{0.6}}{2} = 1.148 \text{ mm/s} \]

Q.40 The gas phase decomposition of azomethane to give ethane and nitrogen takes place according to the following sequence of elementary reactions.

\[
\begin{align*}
(CH_3)_2N_2 + (CH_3)_2N_2 & \rightarrow K_1 (CH_3)_2N_2 + [(CH_3)_2N_2]^* \\
[(CH_3)_2N_2]^* + (CH_3)_2N_2 & \rightarrow K_1 (CH_3)_2N_2 + [(CH_3)_2N_2]^* \\
[(CH_3)_2N_2]^* & \rightarrow K_3 C_2H_6 + N_2
\end{align*}
\]

Using the pseudo-steady-state-approximation for $[(CH3)2N2]^*$, the order with respect to azomethane in the rate expression for the formation of ethane, in the limit of high concentrations of azomethane, is

Explanations:

(1) \(r_1 = \text{Rate of formation of } CH_3N_2 = K_1 (CH_3N_2)^2 \)

(2) \(r_2 = \text{Rate of disappation of } CH_3N_2^* = K_2 [CH_3N_2][CH_3N_2^*] \)

(3) \(r_3 = \text{Rate of disapperance of } CH_3N_2^* = -K_3 [CH_3N_2^*] \)

At steady state Net rate = 0; \(r_1 + r_2 + r_3 = 0 \)

Assuming we get, \([CH_3N_2^*] = \frac{K_1[CH_3N_2]^2}{K_2[CH_3N_2]^2 + K_3} \)

As it given \([CH_3N_2^*] \) is forward in excess amount, \(K_2 [CH_3N_2^*] \gg K_3; \ K_3 = 0 \)

\[
[CH_3N_2^*] = \frac{K_1[CH_3N_2]^2}{K_2[CH_3N_2]^2} = \frac{K_1[CH_3N_2]}{K_2}
\]

Rate of formation of ethanol \(= K_3 [CH_3N_2^*] = K_3 \frac{K_1}{K_2} [CH_3N_2] \)

\% of reaction with represents to \([CH_3N_2^*] \) is 1
Q.41 A first order liquid phase reaction is carried out isothermally at a steady state in a CSTR and 90% conversion is attained. With the same inlet conditions and for the same overall conversion, if the CSTR is replaced by two smaller and identical isothermal CSTRs in series, the % reduction in total volume, to the nearest integer, is ________

Explanations:-

For a single CSTR reaction

\[
\tau = \frac{C_A X_A}{K C_{A_o} (1 - X_A)} \text{ or } K \tau = \frac{X_A}{1 - X_n} = \frac{0.9}{1 - 0.9} = 9
\]

\[
V_i = \frac{9V_o}{K}
\]

For two small reaction in series

\[
\frac{1}{1 - X_A} = (1 + K \tau_s)^2 = \frac{1}{1 - 0.9}
\]

\[
K \tau_s = 2.16 \text{ or } \frac{K V_s}{V_o} = 2.16
\]

\[
V_2 = V_{\text{total}} = V_s + V_o
\]

\[
V_s = \frac{2.16 V_o}{k}
\]

\[
V_2 = V_{\text{total}} = 2V_s = \frac{4.32V_o}{k}
\]

% Reduction in volume = \[
\frac{V_i - V_s}{V_i} \times 100 = \frac{9 - 4.32}{9} \times 100 = 52
\]

Q.42 Match the reactant-product combination in Group 1 with the unit process in Group 2.

<table>
<thead>
<tr>
<th>Group 1</th>
<th>Group 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P) propylene - butanol</td>
<td>(1) Pyrolysis</td>
</tr>
<tr>
<td>(Q) cumene - phenol</td>
<td>(2) Dehydrogenation</td>
</tr>
<tr>
<td>(R) butane - butadiene</td>
<td>(3) Hydroformylation</td>
</tr>
<tr>
<td>(S) ethylene dichloride - vinyl chloride</td>
<td>(4) Peroxidation</td>
</tr>
</tbody>
</table>

(A) P-3, Q-2, R-4, S-1 (B) P-2, Q-4, R-3, S-1
(C) P-1, Q-3, R-2, S-4 (D) P-3, Q-4, R-2, S-1

Explanations:-

D

(P) Propylene - butanol
(Q) Cumene - phenol
(R) Butane- butadiene
(S) Ethylene dichloride - vinyl chloride

(3) Hydroformlysation
(4) Peroxidation
(2) Dehydrogenation
(1) Pyrolysis
Q.43 Identify which of the following statements are FALSE.

(P) Oils with an oleic radical (1 double bond) are more suitable than oils with a
linolenic radical (3 double bonds) as film forming vehicles for paints

(Q) Production of synthesis gas from coal and steam is an endothermic process

(R) Use of chlorine for bleaching of wood pulp results in the release of dioxins

(S) In the manufacture of urea from ammonia, the main intermediate product
 formed is ammonium bicarbonate

(A) P and Q only (B) R and S only
(C) Q and R only (D) P and S only

Explanations:-

D

Ammonium carbamate is the main intermediate product during manufacturing of
urea from NH₃.

Q.44 A unit gain 2nd order underdamped process has a period of oscillation 1 second
and decay ratio 0.25. The transfer function of the process is

(A) \[\frac{1}{0.24s^2 + 0.067s + 1} \]
(B) \[\frac{1}{0.67s^2 + 0.024s + 1} \]
(C) \[\frac{1}{0.021s^2 + 0.1176s + 1} \]
(D) \[\frac{1}{0.1176s^2 + 0.021s + 1} \]

Explanations:-

A

Period oscillation = 1 second
Decay ratio = 0.25

Period of oscillation = \[\frac{2\Pi \tau}{\sqrt{1 - \alpha^2}} \]

Decay ratio = \[\exp \left(\frac{-2\Pi \alpha}{\sqrt{1 - \alpha^2}} \right) \]

Comparing each option with \[\frac{1}{\tau s^2 + 2\tau \alpha + 1} \]

\[\tau = 0.024, \ T = 0.1549 \]
\[2\tau \alpha = 0.067, \ \alpha = 0.2162 \]

Period of oscillation = \[\frac{2\Pi(0.1549)}{\sqrt{1 - 0.2162^2}} = 0.9963 \approx 1 \]

Decay ratio = \[\exp \left(\frac{-2\Pi(0.2162)}{\sqrt{1 - 0.2162^2}} \right) = 0.2489 = 0.25 \]
Q.45 A control valve, with a turndown ratio of 50, follows equal percentage characteristics. The flow rate of a liquid through the valve at 40% stem position is 1 m3/h. What will be the flow rate in m3/h at 50% stem position, if the pressure drop across the valve remains unchanged? (Up to 2 digits after the decimal point.)

Explanations:

Volume flow rate, $V = \left[\exp(\ln(t) \times H)\right] \times \frac{V_{\text{max}}}{t}$

When H = % opening of stem is fraction

V_{max} = Maximum volumetric flow rate

t=turndown nation.

$H_1 = 0.4, H_2 = 0.5$

$V_1 = 1\text{ m}^3/\text{h}, t = 50$

$V_1 = \exp(\ln(t)H_1) \times \frac{V_{\text{max}}}{t}$

$\frac{V_2}{V_1} = \exp\left[\left(H_2 - H_1\right) \times \ln t\right]$

$V_2 = V_1 \exp\left[(0.5 - 0.4) \times \ln 150\right]$

$V_2 = 1.4787\text{ m}^3/\text{h}$

Q.46 The purchase cost of a heat exchanger of 20 m2 area was Rs. 500000 in 2006. What will be the estimated cost (in Rs. to the nearest integer) of a similar heat exchanger of 50 m2 area in the year 2013? Assume the six-tenths factor rule for scaling and the cost index for 2006 as 430.2. The projected cost index for the year 2013 is 512.6.

Explanations:

From six tenth rule

Cost of heat exchange in 2006 = $5000 \left(\frac{50}{20}\right)^{0.6}$ = 866431.05

Cost of heat exchanger in 2013 = $866431.05 \times \frac{512.6}{430.2}$ = 1032386

Q.47 A plant manufactures compressors at the rate of N units/day. The daily fixed charges are Rs. 20000 and the variable cost per compressor is Rs. $500 + 0.2N^{1.3}$. The selling price per compressor is Rs. 1000. The number of compressors to be manufactured, to the nearest integer, in order to maximize the daily profit is

Explanations:

Daily profit = selling price – cost price
P = (1000N) – [(500 + 0.2N^{1.3})N + 20000]

To maximise profit \(\frac{dp}{dN} = 0 \)

\[500 – 0.2(2.3)N^{1.3} = 0 \]

\[N = 216 \]

Common Data Questions: 48 & 49

A reverse osmosis unit treats feed water (F) containing fluoride and its output consists of a permeate stream (P) and a reject stream (R). Let \(C_F \), \(C_P \), and \(C_R \) denote the fluoride concentrations in the feed, permeate, and reject streams, respectively. Under steady state conditions, the volumetric flow rate of the reject is 60% of the volumetric flow rate of the inlet stream, and \(C_F = 2 \) mg/L and \(C_P = 0.1 \) mg/L.

Q.48 The value of \(C_R \) in mg/L, up to one digit after the decimal point, is

Explanations:

\[F = \frac{100L}{h}, R = 0.6F = \frac{60L}{h} \]

\[F = R + P, \quad P = 100 – 60 = \frac{40L}{h} \]

Fluoride balance

\[C_F = C_R R + C_P P = 100(2) = C_R (60) + (40)(0.1) \]

\[C_R = 3.26 \text{ mg/L} \]

Q.49 A fraction \(f \) of the feed is bypassed and mixed with the permeate to obtain treated water having a fluoride concentration of 1 mg/L. Here also the flow rate of the reject stream is 60% of the flow rate entering the reverse osmosis unit (after the bypass). The value of \(f \), up to 2 digits after the decimal point, is

Explanations:

Bypass stream

\[F_C = FC_F \]

\[F^x (1-F) \text{ fluoride content} \]

\[R = 0.6 (F(1-6)) \]

\[C_p = 1 \text{ mg/L, } (P+f \times F) \]
Mass balance at Reverse osmosis in and out

\[P = 0.4(1-f)F \]

Mass balance of fluoride on bypass stream

\[F \times f \times 2 = \left[(F \times f) + P \right] \]

\[F \times f \times 2 = \left[(F \times f) + 0.4 (1-f)F \right] \]

on solving, we get

\[2 \times f = 0.4(1-f) + f \]

\[F = \frac{0.4}{1.4} = 0.286 \]

Common Data Questions: 50 & 51

Liquid reactant A decomposes as follows

\[A \rightarrow R \quad r_A = k_1 C_A^2 \quad k_1 = 0.5 \, \text{m}^3/\text{mol} - \text{s} \]

\[A \rightarrow R \quad r_S = k_2 C_A \quad k_2 = 1 \, \text{s}^{-1} \]

An aqueous feed of composition \(C_{A0} = 30 \, \text{mol/m}^3 \), \(C_{R0} = 2 \, \text{mol/m}^3 \), and \(C_{S0} = 1 \, \text{mol/m}^3 \) enters a CSTR in which the above reactions occur. Assume isothermal and steady state conditions.

Q.50 If the conversion of A is 80%, the concentration of R in the exit stream in \(\text{mol/m}^3 \), to the nearest integer, is______

Explanations:

\[-r_A = K_1 C_A^2 + K_2 C_A \]

\[C_A = C_{A0} (1 - X_A) = 30(0.2) = 6 \, \text{mol/m}^3 \]

\[T = \frac{C_{A0} X_A}{-r_A} = \frac{30(0.8)}{0.5(6)^2 + 6} = 1 \, \text{sec} \]

\[T = \frac{C_R - C_{R0}}{r_R} = \frac{C_R - 2}{K_2 C_A^2} = \frac{C_R - 2}{0.5(6)^2} = 1; \quad C_R = 20 \, \text{mol/m}^3 \]

Q.51 What is the % conversion of A, to the nearest integer, so that the concentration of S in the exit stream is 11.8 \(\text{mol/m}^3 \)?

Explanations:

\[c_s = 11.8 \, \text{mol/m}^3, C_{s0} = 1 \, \text{mol/m}^3 \]

\[T = \frac{c_s - C_{s0}}{K_2 C_A} = \frac{C_A X_A}{-r_A} = \frac{C_A X_A}{K_2 C_A + K_1 C_A^2} \]

\[11.8 - 1 = \frac{C_A X_A}{C_{A0} (1 - X_A)} = \frac{C_A X_A}{C_{A0} (1 - X_A) + 0.5 C_A^2 (1 - X_A)^2} \]
10.8 = \frac{C_A^2 x_A (1 - x_A)}{C_A (1 - x_A) + 0.5 C_A^2 (1 - x_A)^2}

10.8 = \frac{C_A x_A}{1 + 0.5 C_A (1 - x_A)} - \frac{30 x_A}{1 + 15 (1 - x_A)}

we get \(x_A = 0.9 \) or 90%

Linked Answer Questions: Q.52 to Q.55 Carry Two Marks Each

Statement for Linked Answer Questions: 52 & 53

The vapor liquid equilibrium relation for an ideal binary system is given by

\[
y_A^* = \frac{\alpha_{AB} x_A}{1 + (\alpha_{AB} - 1) x_A}
\]

Here \(x_A \) and \(y_A^* \) are the mole fractions of species A in the liquid and vapor, respectively. The relative volatility \((\alpha_{AB}) \) is greater than unity.

Q.52 The liquid mole fraction \(x_A \) at which the maximum difference between the equilibrium vapor mole fraction and liquid mole fraction occurs is

(A) \(\frac{1}{1 + \sqrt{\alpha_{AB}}} \)

(B) \(\frac{0.75}{1 + \sqrt{\alpha_{AB}}} \)

(C) \(\frac{0.5}{\sqrt{\alpha_{AB} + 1}} \)

(D) \(\frac{0.75}{\sqrt{\alpha_{AB} + 1}} \)

Explanations:

\[
y_A^* = \frac{\alpha_{AB} x_A}{1 + (\alpha_{AB} - 1) x_A}
\]

\[
D = Y_A^* - x_A = \frac{\alpha_{AB} x_A}{1 + (\alpha_{AB} - 1) x_A} - x_A
\]

\[
D = \frac{\alpha_{AB} x_A - x_A - x_A^* (\alpha_{AB} - 1)}{1 + (\alpha_{AB} - 1) x_A}; \quad D = \frac{0.75 x_A - x_A^* (\alpha_{AB} - 1)}{1 + (\alpha_{AB} - 1) x_A}
\]

For maximum \(\frac{dD}{dx_A} = 0 \)

\[
\frac{dD}{dx_A} = \frac{[(\alpha_{AB} - 1) x_A] [1 - 2 x_A (\alpha_{AB} - 1)] - [(\alpha_{AB} - 1) x_A - x_A^* (\alpha_{AB} - 1)]}{[1 + (\alpha_{AB} - 1) x_A]^2}
\]

\[
0 = (\alpha_{AB} - 1) + (\alpha_{AB} - 1)^2 x_A - 2 x_A (\alpha_{AB} - 1) 2 x_A^2 (\alpha_{AB} - 1)^2 - (\alpha_{AB} - 1)^2 - (\alpha_{AB} - 1)^2 x_A + x_A^2 (\alpha_{AB} - 1)^2
\]

On solving we get, \(x_A = \frac{1}{1 + \sqrt{\alpha_{AB}}} \)
Q.53 A liquid having the composition found in the first part of the linked answer question, is flash distilled at a steady state to a final liquid mole fraction of 0.25. If \(\cdot \cdot \cdot \) is 2.5, the fraction of the feed vaporized is

(A) 0.08 (B) 0.20 (C) 0.67 (D) 0.74

Explanations:-

C

Statement for Linked Answer Questions: 54 & 55

Consider the following transfer function

\[
G_p(s) = \frac{5}{(2s + 1)^4}
\]

(Note: The unit of the process time constant is in seconds.)

Q.54 The crossover frequency (in rad/s) of the process is

(A) 20 (B) 0.1 (C) 0.5 (D) 0.05

Explanations:-

C

\[
G(s) = \frac{5}{(2s + 1)^4}
\]

At Crossover frequency phase log is \(-180^\circ\)

\[-180 = 4 \cos^{-1}(-2w_c) \]

We get \(\tan^{-1}(-2w_c) = -45 \)

\[w_c = 0.5 \text{ rad/sec} \]

Q.55 For the computation of Ziegler-Nichols settings, the ultimate period (in s/cycle) and the ultimate gain are

(A) \(\pi \) and 0.8, respectively (B) \(4\pi \) and 0.8, respectively

(C) \(4\pi \) and 1.25, respectively (D) \(\pi \) and 1.25, respectively

Explanations:-

B

Ultimate period \(= \frac{2\pi}{\omega_u} = \frac{2\pi}{0.5} = 40 \)

Amplitude ratio at cross over frequency is 1

\[\frac{5k_c}{((2\omega_u^2 + 1)^2} = 1; \ k_c = \frac{4}{5} = 0.8 \]

Q. No. 56 – 60 Carry One Mark Each.

Q.56 If \(3 \leq X \leq 5 \) and \(8 \leq Y \leq 11 \) then which of the following options is TRUE?

(A) \(\frac{3}{5} \leq \frac{X}{Y} \leq \frac{8}{5} \)

(B) \(\frac{3}{11} \leq \frac{X}{Y} \leq \frac{8}{11} \)

(C) \(\frac{3}{11} \leq \frac{X}{Y} \leq \frac{8}{5} \)

(D) \(\frac{3}{5} \leq \frac{X}{Y} \leq \frac{8}{11} \)
Explanations:-
B
Given that $3 \leq x \leq 5$(1)
and $8 \leq y \leq 11$(2)
Now from (2), $\frac{1}{8} \geq \frac{1}{y} \geq \frac{1}{11}$
$\Rightarrow \frac{1}{11} \leq \frac{1}{y} \leq \frac{1}{8}$(3)
$\Rightarrow \frac{3}{11} \leq \frac{x}{y} \leq \frac{5}{8}$

Q.57 The Headmaster ____________ to speak to you.
Which of the following options is incorrect to complete the above sentence?
(A) is wanting (B) wants (C) want (D) was wanting
Explanations:-
C

Q.58 Mahatama Gandhi was known for his humility as
(A) he played an important role in humiliating exit of British from India.
(B) he worked for humanitarian causes.
(C) he displayed modesty in his interactions.
(D) he was a fine human being.
Explanations:-
C

Q.59 All engineering students should learn mechanics, mathematics
 I II III
and how to do computation.
 IV
Which of the above underlined parts of the sentence is not appropriate?
(A) I (B) II (C) III (D) IV
Explanations:-
D

Q.60 Select the pair that best expresses a relationship similar to that expressed in the pair:
 water: pipe::
 (A) cart: road (B) electricity: wire
 (C) sea: beach (D) music: instrument
Explanations:- B
Q. No. 61 – 65 Carry Two Marks Each

Q.61 Velocity of an object fired directly in upward direction is given by \(V = 80 - 32t \), where \(t \) (time) is in seconds. When will the velocity be between 32 m/sec and 64 m/sec?

(A) (1, 3/2)
(B) (1/2, 1)
(C) (1/2, 3/2)
(D) (1, 3)

Explanations:-

C

Q.62 In a factory, two machines M1 and M2 manufacture 60% and 40% of the autocomponents respectively. Out of the total production, 2% of M1 and 3% of M2 are found to be defective. If a randomly drawn autocomponent from the combined lot is found defective, what is the probability that it was manufactured by M2?

(A) 0.35
(B) 0.45
(C) 0.5
(D) 0.4

Explanations:-

C

Let \(E_1 \) be the machine M1 manufacture auto companies
Let \(E_2 \) be the event of machine M2 manufacture auto companies

Given \(P(E_1) = 60\% = \frac{60}{100} \)

\(P(E_2) = 40\% = \frac{40}{100} \)

Let 'A' be the event of component found to be defective

Given \(P(A / E_1) = 2\% = \frac{2}{100} \); \(P(A / E_2) = 3\% = \frac{3}{100} \)

A randomly draw on auto component from the lot is sound defective the probability it was manufactured by \(E_2 \) is \(P(E_2 / A) \) we have

\[
P(E_2 / A) = \frac{P(E_2)P(A / E_2)}{P(E_1)P(A / E_1) + P(E_2)P(A / E_2)} = \frac{40 \cdot 3}{60 \cdot 2 + 40 \cdot 3} = \frac{1}{2}
\]

Q.63 Following table gives data on tourists from different countries visiting India in the year 2011.

<table>
<thead>
<tr>
<th>Country</th>
<th>Number of Tourists</th>
</tr>
</thead>
<tbody>
<tr>
<td>USA</td>
<td>2000</td>
</tr>
<tr>
<td>England</td>
<td>3500</td>
</tr>
<tr>
<td>Germany</td>
<td>1200</td>
</tr>
</tbody>
</table>
Which two countries contributed to the one third of the total number of tourists who visited India in 2011?

(A) USA and Japan
(B) USA and Australia
(C) England and France
(D) Japan and Australia

Explanations:

C

Q.64 If $|−2X + 9| = 3$ then the possible value of $|−X|− X^2$ would be:

(A) 30 (B) -30 (C) -42 (D) 42

Explanations:

B

$1-2x+91=3$

Squaring on both sides $(-2x+9)^2=9$

$4x^2-36x+81=9$

$4x^2-36x+72=0$

$x^2-9x+18=0$

$(x-6)(x-3)=0$

$x=6$ or 3

If $x = 6$ then $|x| − x^2 = |6| − (6)^2 = 6 − 36 = −30$

Q.65 All professors are researchers
Some scientists are professors

Which of the given conclusions is logically valid and is inferred from the above arguments:

(A) All scientists are researchers
(B) All professors are scientists
(C) Some researchers are scientists
(D) No conclusion follows

Explanations:

C