IES-2010- Paper-I

1. Consider the following statements:
 For a rectangular waveguide with dimensions \(a \times b \) where \(b \) is the narrow dimension, small value of \(b \)
 1. Gives a larger separation between cutoff frequencies of \(TE_{01} \) and \(TE_{10} \) modes
 2. Gives increased attenuation
 3. Limits power handling capabilities because of breakdown field limits
 Which of the above statements is/are correct?
 (A) 1 and 2 only (B) 1, 2 and 3 (C) 2 only (D) 3 only

2. Consider the following statements relating to the cavity resonator:
 1. The cavity resonator does not possess as many modes as the corresponding waveguide does
 2. The resonant frequencies of cavities are very closely spaced.
 3. The resonant frequency of a cavity resonator can be changed by altering its dimensions
 Which of the above statements is/are correct?
 (A) 2 and 3 only (B) 2 only (C) 3 only (D) 1, 2 and 3

3. An axial magnetic field is applied to a cylindrical rod. The Faraday rotation of a plane polarized beam after emergence from the rod is \(5^\circ \). If both the field and length of the rod are doubled, then the angle of rotation is
 (A) \(40^\circ \) (B) \(5^\circ \) (C) \(10^\circ \) (D) \(20^\circ \)

4. Given a range of frequencies, which of the following systems is best for transmission line load matching?
 (A) Single stub (B) Double stub
 (C) Single stub with adjustable position (D) Quarter wave transformer

5. In a junction transistor, recombination of electrons and holes occurs in
 (A) Base region only (B) Emitter region only
 (C) Collector region only (D) All the 3 regions

6. In cylindrical waveguides the attenuation will be minimum, at a frequency which is \(\sqrt{3} \) times the cutoff frequency for the following modes of operations:
 1. \(TE_{10} \) 2. \(TM_{11} \) 3. \(TM_{10} \) 4. \(TE_{11} \)
 Which of the above are correct?
 (A) 1, 2, 3 and 4 (B) 2 and 3 only (C) 1 and 2 only (D) 3 and 4 only
7. Consider the following statements regarding Thermistor:
 1. It has a high sensitivity
 2. It has a linear relationship with temperature.
 3. It is a resistive device
 4. It can be used as a time–delay device
 Which of the above statements are correct?
 (A) 1, 2, 3 and 4 (B) 2, 3 and 4 only (C) 1, 3 and 4 only (D) 1, 2 and 3 only

8. If the response of LTI continuous time system to unit step input is
 \[\left(\frac{1}{2} - \frac{1}{2}e^{-2t} \right)u(t) \], then
 impulse response of the system is
 (A) \(\left(\frac{1}{2} - \frac{1}{2}e^{-2t} \right)u(t) \)
 (B) \(e^{-2t}u(t) \)
 (C) \((1 - e^{-2t})u(t) \)
 (D) Constant

9. Consider the following statements:
 1. Electric or magnetic field must have two orthogonal linear components
 2. The two components must have the same magnitude
 3. The two components must have a time–phase difference of odd multiples of 90°
 Which of these are the necessary and sufficient conditions for a time–harmonic wave to be
 circularly polarized at a given point in space?
 (A) 1 and 2 only (B) 2 and 3 only (C) 1, 2 and 3 (D) 1 and 3 only

10. Encoder
 (A) Assigns quantized values
 (B) Changes quantized values to binary values
 (C) Changes quantized values to numerical values
 (D) Changes numerical values to binary values

11. The mode with lowest cutoff frequency for an electromagnetic wave propagating between
 two perfectly conducting parallel plates of infinite extent is
 (A) TE_{10} (B) TM_{10} (C) TM_{01} (D) TEM

12. Consider the following statements regarding the use of Laplace transforms and Fourier
 transforms in circuit analysis:
 1. Both make the solution of circuit problems simple and easy
 2. Both are applicable for the study of circuit behaviour for \(t < \alpha \) to \(\alpha \)
 3. Both convert differential equations to algebraic equations
 4. Both can be used for transient and steady state analysis
Which of the above statements are correct?
(A) 1, 2, 3 and 4 (B) 2, 3 and 4 only (C) 1, 2 and 4 only (D) 1, 3 and 4 only

13. Consider the following statements regarding depth of penetration or skin depth in a conductor:
1. It increases as frequency increases
2. It is inversely proportional to square root of μ and σ
3. It is inversely proportional to square root of f
4. It is directly proportional to square root of μ and σ
Which of the above statements are correct?
(A) 1 and 2 only (B) 3 and 4 only (C) 2 and 3 only (D) 1, 2, 3 and 4

14. In a three element Yagi antenna
(A) All the three elements are of equal length
(B) The driven element and the director are of equal length but the reflector is longer than both of them
(C) The reflector is longer than the driven element which in turn is longer than the director
(D) The director is longer than the driven element which in turn is longer than the reflector

15. The output of a linear system for step input is $\left(t^2 e^{-2t}\right)u(t)$. Then the transfer function is
(A) $\frac{s}{(s+1)^2}$ (B) $\frac{2s}{(s+1)^3}$ (C) $\frac{s}{s^2(s+1)}$ (D) $\frac{1}{(s+1)^3}$

16. Match List I with List II and select the correct answer using the code given below the lists:

<table>
<thead>
<tr>
<th>List – I</th>
<th>List – II</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) $\frac{d}{\lambda} = 0.25$, $\alpha = 90^\circ$</td>
<td>1.</td>
</tr>
<tr>
<td>(b) $\frac{d}{\lambda} = 0.5$, $\alpha = 0^\circ$</td>
<td>2.</td>
</tr>
</tbody>
</table>
17. A first order circuit is excited with a dc source. The current $i(t)$ through any element of the circuit can be written as (i_f and i_i are the final and initial values, respectively, of the current)

(A) $i_i - (i_i - i_f) e^{-\frac{t}{T}}$
(B) $i_f - (i_f - i_i) e^{-\frac{t}{T}}$
(C) $i_i - (i_i - i_f) e^{-\frac{t}{T}}$
(D) $i_f - (i_f - i_i) e^{-\frac{t}{T}}$

18. If random process $X(t)$ and $Y(t)$ are orthogonal, then

(A) $S_{XY}(f) = 0$
(B) $S_{XY}(f) = S_X(f) = S_Y(f)$
(C) $R_{XY}(\tau) = h(\tau)$
(D) $H(f) = 0$

19. A short current element has length $\ell = 0.03 \lambda$, where λ is the wavelength. The radiation resistance for uniform current distribution is

(A) $0.072 \pi^2 \Omega$
(B) $80 \pi^2 \Omega$
(C) 72Ω
(D) 80Ω

20. The value of the current $i(t)$ in amperes in the above circuit is

(A) 0
(B) $10 u(t)$
(C) $10e^{-t} u(t)$
(D) $10(1-e^{-t}) u(t)$
21. In the circuit shown above, the switch is closed after a long time. The current \(i_s(0^+) \) through the switch is

\[\begin{array}{c}
12\,\text{V} \\
\downarrow \\
3\,\text{F} \\
1\,\text{H} \\
4\,\text{Ω} \\
\downarrow \\
8\,\text{Ω} \\
\end{array}\]

(A) 1 A (B) 2/3 A (C) 1/3 A (D) 0 A

22. If a random process \(X(t) \) is ergodic, then statistical averages

(A) And time averages are different (B) And time averages are same
(C) Are greater than time averages (D) Are smaller than time averages

23. The correct statement is

(A) Microstrip lines can support pure TEM mode of propagation but shielded coaxial lines cannot
(B) Microstrip lines cannot support pure TEM mode of propagation but shielded coaxial lines can
(C) Both microstrip lines and shielded coaxial lines can support pure TEM mode of propagation
(D) Neither microstrip lines nor shielded coaxial lines can support pure TEM mode of propagation

24. The value of \(R \) in the below circuit is

\[\begin{array}{c}
200\,\text{V} \\
\downarrow \\
24\,\text{Ω} \\
\downarrow \\
8\,\text{Ω} \\
\end{array}\]

(A) 4Ω (B) 40Ω (C) 44Ω (D) 440Ω

25. For the network shown below

\[\begin{array}{c}
\text{I} = (0.2\,\text{V} - 2)\,\text{A}, \quad (\text{I} = \text{the current delivered by the voltage source V}). \quad \text{Thevenin voltage} \\
\text{V}_{th} \text{ and resistance} \text{R}_{th} \text{ for the network N across the terminals AB are respectively}
\end{array}\]

(A) -10V, 5Ω (B) 10V, 5Ω (C) -10V, 0.2Ω (D) 10V, 0.2Ω
26. Z and Laplace transform are related by
 (A) \(s = \ln Z \) \hspace{1cm} (B) \(s = \frac{\ln Z}{T} \) \hspace{1cm} (C) \(s = Z \) \hspace{1cm} (D) \(s = \frac{T}{\ln Z} \)

27. A line of characteristic impedance 50 \(\Omega \) is terminated at one end by +j50 \(\Omega \). The VSWR on the line is
 (A) 1 \hspace{1cm} (B) \(\infty \) \hspace{1cm} (C) 0 \hspace{1cm} (D) j

28. The value of current in 80\(\Omega \) resistor of below circuit is

 ![Circuit Diagram](image)

 (A) 0.5 A \hspace{1cm} (B) 2.0 A \hspace{1cm} (C) 5.0 A \hspace{1cm} (D) 20.0 A

29. Thevenin equivalent voltage \(V_{AB} \) and resistance \(R_t \) across the terminals AB in the below circuit are

 ![Circuit Diagram](image)

 (A) 6V, 5\(\Omega \) \hspace{1cm} (B) 4V, 5\(\Omega \) \hspace{1cm} (C) 2V, 2.4\(\Omega \) \hspace{1cm} (D) 2V, 2.5\(\Omega \)

30. Alumina is a
 (A) Dielectric \hspace{1cm} (B) Ceramic \hspace{1cm} (C) Semiconductor \hspace{1cm} (D) Conductor

31. What is the voltage across the load resistance, \(R_L \) in the above circuit? The value of each resistor connected in the circuit is 10\(\Omega \)

 ![Circuit Diagram](image)

 (A) 3.33 V \hspace{1cm} (B) 33.33 V \hspace{1cm} (C) 333.33 V \hspace{1cm} (D) 0 V
32. At UHF short-circuited lossless transmission lines can be used to provide appropriate values of impedance. Match List I with List II and select the correct answer using the code given below the lists:

<table>
<thead>
<tr>
<th>List – I</th>
<th>List – II</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) $\ell < \lambda / 4$</td>
<td>1. Capacitive</td>
</tr>
<tr>
<td>(b) $\ell = \lambda / 4 < 1 < \lambda / 2$</td>
<td>2. Inductive</td>
</tr>
<tr>
<td>(c) $\ell = \lambda / 4$</td>
<td>3. 0</td>
</tr>
<tr>
<td>(d) $\ell = \lambda / 2$</td>
<td>4. ∞</td>
</tr>
</tbody>
</table>

(A) a = 2, b = 1, c = 4, d = 3
(B) a = 3, b = 1, c = 4, d = 2
(C) a = 2, b = 4, c = 1, d = 3
(D) a = 3, b = 4, c = 1, d = 2

33. Convolution of two sequences $x_1[n]$ and $x_2[n]$ is represented as

(A) $X_1(z) * X_2(z)$
(B) $X_1(z) X_2(z)$
(C) $X_1(z) + X_2(z)$
(D) $X_1(z) / X_2(z)$

34. A half-wave dipole working at 100 MHz in free space radiates a power of 1000 Watts. The field strength at a distance of 10 kms in the direction of maximum radiation is

(A) 1.73 mV/m
(B) 2.12 mV/m
(C) 2.22 mV/m
(D) 22.2 mV/m

35. In the circuit shown below, the current through R_L is

(A) 6 A
(B) 4 A
(C) 2 A
(D) 0

36. Decimation is the process of

(A) Retaining sequence values of $x_p[n]$ other than zeroes

(B) Retaining all sequence values of $x_p[n]$
(C) Dividing the sequence value by 10
(D) Multiplying the sequence value by 10

37. In the circuit shown below, the current I is

(A) 1 A
(B) 1.5 A
(C) 2.5 A
(D) 4 A
38. It is required to find the current through a particular branch of a linear bilateral network without mutual coupling when the branch impedance takes four different values. Which one of the following methods will be preferred?

(A) Mesh analysis (B) Thevenin’s equivalent circuit
(C) Nodal analysis (D) Superposition theorem

39. A source having internal impedance of \((9 + j2)\Omega\) is to deliver maximum power to a resistive load. The load resistance should be

(A) 9Ω (B) 12Ω (C) 15Ω (D) 21Ω

40. There are two conducting plates of sizes 1m×1m and 2m×2m. Ratio of the capacitance of the second one with respect to that of the first one is

(A) 4 (B) 2 (C) 1/2 (D) 1/4

41. Atomic number of silicon is

(A) 12 (B) 13 (C) 14 (D) 15

42. A voltage source of 240 volts having an internal impedance of \((3 – j4)\Omega\) is supplying power to complex load impedance \(Z_1\). What will be the maximum power transferred to the load?

(A) 2.4 kW (B) 3.6 kW (C) 4.8 kW (D) 6.0 kW

43. In the circuit shown below, switch S is closed at \(t = 0\). The time constant of the circuit and initial value of current \(i(t)\) are

(A) 30sec, 0.5A (B) 60sec, 1.0A (C) 90sec, 1.0A (D) 20sec, 0.5A

44. The intrinsic impedance of copper at 3 GHz (with parameters:

\[\mu = 4\pi \times 10^{-7} \text{ H/m}; \ \epsilon = 10^{-70} / 36\pi; \ \text{and} \ \sigma = 5.8 \times 10^7 \text{ S/m} \]) will be

(A) \(0.02e^{j\pi/4}\ \Omega\) (B) \(0.02e^{j\pi/2}\ \Omega\)
(C) \(0.2e^{j\pi/2}\ \Omega\) (D) \(0.2e^{j\pi/4}\ \Omega\)
45. Frequency scaling [relationship between discrete time frequency \(\Omega \) and continuous time frequency \(\omega \)] is defined as

(A) \(\omega = 2\Omega \)
(B) \(\omega = 2T_s/\Omega \)
(C) \(\Omega = 2\omega/T_s \)
(D) \(\Omega = \omega T_s \)

46. In the circuit shown below, the independent current source generates zero current for \(t < 0 \) and a pulse \(5te^{-4t} \) A, for \(t > 0 \). At what instant of time, will the current attain the maximum value in the circuit?

![Circuit Diagram]

(A) 0.25 sec
(B) 0.5 sec
(C) 1 sec
(D) 2 sec

47. A single strain gauge of resistance 120 \(\Omega \) is mounted along the axial direction of an axially loaded specimen of steel (\(E = 200 \) GPa). The percentage change in length of the rod due to loading is 3% and the corresponding change in resistivity of strain gauge material is 0.3%. For a Poisson’s ratio of 0.3, the value of the gauge factor is

(A) 1.3
(B) 1.5
(C) 1.7
(D) 2.0

48. A standard air filled waveguide WR–187 has inside wall dimensions of \(a = 4.755 \) cm and \(b = 2.215 \) cm. At 12 GHz, it will support

(A) \(TE_{10} \) mode only
(B) \(TE_{10} \) and \(TE_{20} \) modes only
(C) \(TE_{10}, TE_{20} \) and \(TE_{01} \) modes only
(D) \(TE_{10}, TE_{20}, TE_{01} \) and \(TE_{11} \) modes

49. In a variable type carbon resistor the carbon track is formed of a mixture of carbon, resin and

(A) Clay
(B) Manganese
(C) Nickel
(D) Cadmium

50. Consider the following statements:

Fourier series of any periodic function \(X(t) \) can be obtained if

1. \[\int_0^1 |X(t)| dt < \infty \]

2. Finite number of discontinuous exists within finite time interval \(t \)

Which of the above statements is/are correct?

(A) 1 only
(B) 2 only
(C) Both 1 and 2
(D) Neither 1 nor 2
51. Voltage and current expressions for the below circuit are given at \(t \geq 0 \) as \(v = 125e^{-50t} \text{ V}, \)
\(i = 5e^{-50t} \text{ A} \). The value of \(L \) will be

\[
\begin{align*}
\text{L} & \quad \text{R} \\
\text{i} & \quad \text{v} \quad + \\
& \quad -
\end{align*}
\]

(A) 0.005 H
(B) 0.05 H
(C) 0.5 H
(D) 5 H

52. LED is a
(A) p–n diode
(B) Thermistor
(C) Gate
(D) Transistor

53. The flux and potential functions due to a line charge and due to two concentric circular conductors are of the following form:
(A) Concentric circular equipotential lines and straight radial flux lines
(B) Concentric circular flux lines and straight equipotential lines
(C) Equipotentials due to line charge are concentric cylinders and equipotentials due to two conductors are straight lines
(D) Equipotentials due to line charge are straight flat surfaces and those due to two conductors are concentric cylinders

54. Consider the following statements:
1. The Laplace transform of the unit impulse function is \(s \times \text{Laplace transform of the unit ramp function} \)
2. The impulse function is a time derivative of the ramp function
3. The Laplace transform of the unit impulse function is \(s \times \text{Laplace transform of the unit step function} \)
4. The impulse function is a time derivative of the unit step function
Which of the above statements are correct?
(A) 1 and 2 only
(B) 3 and 4 only
(C) 2 and 3 only
(D) 1, 2, 3 and 4

55. In ionic crystals, electrical conductivity is
(A) Very high
(B) Depends on material
(C) Depends on temperature
(D) Practically zero

56. The incorrect statement is
(A) Thermistor has a high sensitivity.
(B) Thermocouple does not require an external electrical source for its operation
(C) Platinum has a linear \(R–T \) relationship
(D) Thermistor does not require an external electrical source for its operation
57. Consider points A, B, C and D on a circle of radius 2 units as in the above figure. The items in List II are the values of $\overline{\phi}$ at different points on the circle. Match List I with List II and select the correct answer using the code given below the lists:

<table>
<thead>
<tr>
<th>List – I</th>
<th>List – II</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) A</td>
<td>1. \overline{a}_X</td>
</tr>
<tr>
<td>(b) B</td>
<td>2. \overline{a}_Y</td>
</tr>
<tr>
<td>(c) C</td>
<td>3. $-\overline{a}_X$</td>
</tr>
<tr>
<td>(d) D</td>
<td>4. $(\overline{a}_X + \overline{a}_Y) / \sqrt{2}$</td>
</tr>
<tr>
<td></td>
<td>5. $-(\overline{a}_X - \overline{a}_Y) / \sqrt{2}$</td>
</tr>
<tr>
<td></td>
<td>6. $(\overline{a}_X - \overline{a}_Y) / \sqrt{2}$</td>
</tr>
</tbody>
</table>

(A) $a - 3, b - 4, c - 5, d - 2$
(B) $a - 1, b - 6, c - 5, d - 2$
(C) $a - 1, b - 6, c - 2, d - 4$
(D) $a - 3, b - 5, c - 4, d - 2$

58. Consider the following statements regarding an FET:
1. Its operation depends upon the flow of majority carriers only
2. It has a high input resistance
3. It is suitable for high frequency
4. Its operation depends upon the flow of both majority and minority carriers
Which of the above statements are correct?
(A) 1, 2, 3 and 4
(B) 1 and 2 only
(C) 2 and 3 only
(D) 3 and 4 only

59. The power dissipated in the 1Ω resistor is 1 W due to the 5 V voltage source alone and 576 W due to 30 A current source alone. The total power absorbed in the same resistor due to both the sources is

(A) 577 W
(B) 575 W
(C) 625 W
(D) 529 W
60. A long 1 metre thick dielectric \((\varepsilon = 3\varepsilon_0)\) slab occupying the region \(0 < x < 5\) is placed perpendicularly in a uniform electric field \(E_0 = 6\overline{a}_X\). The polarization \(\overline{P}\) inside the dielectric is

(A) \(4\varepsilon_0 \overline{a}_X\) \quad (B) \(8\varepsilon_0 \overline{a}_X\) \quad (C) \(36\varepsilon_0 \overline{a}_X\) \quad (D) \(12\varepsilon_0 \overline{a}_X\)

61. The driving point impedance of a network is given by \(Z(s) = \frac{2s+1}{s(s+1)}\). The Foster realization of the network is

(A) \[\begin{array}{c}
1\Omega \\
\hline
\hline
1H
\end{array}\] \quad (B) \[\begin{array}{c}
1\Omega \\
\hline
\hline
1H
\end{array}\]

(C) \[\begin{array}{c}
1\Omega \\
\hline
\hline
1H
\end{array}\] \quad (D) \[\begin{array}{c}
1\Omega \\
\hline
\hline
1H
\end{array}\]

62. An air–filled rectangular waveguide has dimensions of \(a = 6\) cm and \(b = 4\) cm. The signal frequency is 3 GHz. Match List I with List II and select the correct answer using the code given below the lists

<table>
<thead>
<tr>
<th>List – I</th>
<th>List – II</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) (TE_{10})</td>
<td>1. 2.5 GHz</td>
</tr>
<tr>
<td>(b) (TE_{01})</td>
<td>2. 3.75 GHz</td>
</tr>
<tr>
<td>(c) (TE_{11})</td>
<td>3. 4.506 GHz</td>
</tr>
<tr>
<td>(d) (TM_{11})</td>
<td>4. 4.506 GHz</td>
</tr>
<tr>
<td>(A) (a - 1, b - 2, c - 3, d - 4)</td>
<td>(B) (a - 4, b - 2, c - 3, d - 1)</td>
</tr>
<tr>
<td>(C) (a - 1, b - 3, c - 2, d - 4)</td>
<td>(D) (a - 4, b - 3, c - 2, d - 1)</td>
</tr>
</tbody>
</table>

63. If \(X(\omega) = \delta(\omega - \omega_0)\) then \(X(t)\) is

(A) \(e^{-j\omega_0 t}\) \quad (B) \(\delta(t)\) \quad (C) \(\frac{1}{2\pi} e^{j\omega_0 t}\) \quad (D) 1

64. An electric charge of \(Q\) coulombs is located at the origin. Consider electric potential \(V\) and electric field intensity \(E\) at any point \((x, y, z)\).

Then

(A) \(E\) and \(V\) are both scalars \quad (B) \(E\) and \(V\) are both vectors

(C) \(E\) is a scalar and \(V\) is a vector \quad (D) \(E\) is a vector and \(V\) is a scalar
65. Consider the following statements regarding a transmission line:
1. Its attenuation is constant and is independent of frequency
2. Its attenuation varies linearly with frequency
3. Its phase shift varies linearly with frequency
4. Its phase shift is constant and is independent of frequency
Which of the above statements are correct for distortion less line?
(A) 1, 2, 3 and 4 (B) 2 and 3 only (C) 1 and 3 only (D) 3 and 4 only

66. Match List I with List II and select the correct answer using the code given below the lists:

<table>
<thead>
<tr>
<th>List – I</th>
<th>List – II</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) L.V.D.T</td>
<td>1. Resistive</td>
</tr>
<tr>
<td>(b) Strain Gauge</td>
<td>2. Inductive</td>
</tr>
<tr>
<td>(c) Dielectric Gauge</td>
<td>3. Capacitive</td>
</tr>
<tr>
<td>(d) Thermocouple</td>
<td>4. Self generating</td>
</tr>
</tbody>
</table>

(A) a – 2, b – 3, c – 1, d - 4 (B) a – 4, b – 3, c – 1, d – 2
(C) a – 2, b – 1, c – 3, d – 4 (D) a – 4, b – 1, c – 3, d – 2

67. Consider the following:
In a parallel plate capacitor, let the charge be held constant while the dielectric material is replaced by a different dielectric. Consider
1. Stored energy
2. Electric field intensity
3. Capacitance
Which of these changes?
(A) 1 only (B) 1 and 2 only (C) 2 and 3 only (D) 1, 2 and 3

68. In the below circuit, the value of C for the circuit to exhibit a power factor of 0.86 is approximately

(A) 0.4 F (B) 0.6 F (C) 1.4 F (D) 0.1 F

69. A long straight non-magnetic conductor of radius 8 mm is carrying a uniform current density of 100 kA / m² in the a direction. For this case, which one of the following is not correct?
(A) $\nabla \times H = 10^5 a_2$ A/m2 for $0 < \rho < 8$ mm
(B) $\nabla \times B = 0$
(C) The magnetic field intensity for $\rho > 8$ mm is $\frac{10^5}{2} \rho a_2$ A/m
(D) The total current carried by the conductor is 6.4πA

70. Consider the following statements:
They are given as necessary conditions for driving point functions with common factors in
$p(s)$ and $q(s)$ cancelled:
1. The coefficients of the polynomial in $p(s)$ and $q(s)$ must be real
2. Poles and zeroes must be conjugate pairs if imaginary or complex
3. The terms of lowest degree in $p(s)$ and $q(s)$ may differ in degree by one at most
Which of the above statements is/are correct?
(A) 1, 2 and 3 (B) 1 only (C) 1 and 2 only (D) 2 and 3 only

71. For distortionless transmission through LTI system, phase of $H(\omega)$ is
(A) Constant (B) One (C) Zero (D) Linearly dependent on ω

72. Consider the following statements:
1. The coefficients in the polynomials $p(s)$ and $q(s)$ must be real and positive
2. Poles and zeroes of $z(s)$ must be conjugate if imaginary or complex
Which of these statements are associated with the driving point function $Z(s) = \frac{p(s)}{q(s)}$?
(A) Both 1 and 2 (B) 1 only (C) 2 only (D) Neither 1 nor 2

73. Consider the following statements relating to the electrostatic and magnetostatic fields:
1. The relative distribution of charges on an isolated conducting body is dependent on the
total charge of the body
2. The magnetic flux through any closed surface is zero
Which of the above statements is/are correct?
(A) Neither 1 nor 2 (B) 1 only (C) 2 only (D) Both 1 and 2

74. The crystal in which atoms are chemically highly inactive and they do not form compounds
with other atoms is
(A) Ionic crystal (B) Metal (C) Valence crystal (D) Van der Waals crystal
75. A two–port network has the ABCD parameters \[
\begin{bmatrix}
7 & 8 \\
3 & 4
\end{bmatrix} .
\] Two such identical networks are cascaded. The ABCD parameters of the overall cascaded network will be
(A) \[
\begin{bmatrix}
14 & 16 \\
6 & 8
\end{bmatrix}
\] (B) \[
\begin{bmatrix}
73 & 88 \\
33 & 40
\end{bmatrix}
\] (C) \[
\begin{bmatrix}
1 & 1 \\
1 & 1
\end{bmatrix}
\] (D) \[
\begin{bmatrix}
49 & 64 \\
9 & 16
\end{bmatrix}
\]

76. A circuit consists of two clocked JK flip–flops connected as follows:
\(J_0 = K_0 = \overline{Q}_1 \), \(J_1 = Q_0 \) and \(K_1 = \overline{Q}_0 \). Each flip–flop receives the clock input simultaneously. The circuit acts as a
(A) Counter of mod 3 (B) Counter of mod 4
(C) Shift–left register (D) Shift–right register

77. Which one of the following is not a ferromagnetic material?
(A) Cobalt (B) Iron (C) Nickel (D) Bismuth

78. With reference to the above network the value of \(Z_{11} \) will be
\[
\begin{aligned}
&+ \quad 5 \Omega & & 5 \Omega & & 5 \Omega \\
&I_1 & & I_2 \\
&V_1 & 5 \Omega & & 5 \Omega & & V_2 \\
&- & & 4v_z \\
&- & & -
\end{aligned}
\]
(A) \(-3\) (B) \(3\) (C) \(-1\) (D) \(-5\)

79. When donor atoms are added to semiconductor, it
(A) Increases the energy band gap of the semiconductor
(B) Decreases the energy band gap of the semiconductor
(C) Introduces a new narrow band gap near the conductor band
(D) Introduces a new discrete energy level below the conduction band

80. The value of \(V \) that would result in a steady–state current of 1 A through the inductor in the below circuit is
\[
\begin{aligned}
&\text{t} = 0 & & 10 \Omega & & 10 \Omega \\
&V & & 10 \Omega & & 1H \\
\end{aligned}
\]
(A) \(30 \text{ V}\) (B) \(15 \text{ V}\) (C) \(20 \text{ V}\) (D) \(25 \text{ V}\)
81. The Fourier transform of unit step sequence is
(A) $\pi \delta(\Omega)$ (B) $\frac{1}{1 - e^{-\Omega}}$
(C) $\pi \delta(\Omega) + \frac{1}{1 - e^{-\Omega}}$ (D) $1 - e^{-\Omega}$

82. Two milli ammeters with full scale currents of 1 mA and 10 mA are connected in parallel and they read 0.5 mA and 2.5 mA respectively. Their internal resistances are in the ratio of
(A) 1 : 10 (B) 10 : 1 (C) 1 : 5 (D) 5 : 1

83. The magnetic flux density B and the vector magnetic potential A are related as
(A) $B = \nabla \times A$ (B) $A = \nabla \times B$ (C) $B = \nabla A$ (D) $A = \nabla B$

84. Consider the following statements for a symmetrical T section:
1. Z_{11} and Z_{22} are equal
2. Z_{12} and Z_{21} are equal
3. Z_{11} and Z_{42} are equal
4. Z_{21} and Z_{22} are equal
Which of the above statements are correct?
(A) 1 and 2 only (B) 2 and 3 only (C) 3 and 4 only (D) 1, 2, 3 and 4

85. Match List I with List II and select the correct answer using the code given below the lists:

<table>
<thead>
<tr>
<th>List – I (Excitation)</th>
<th>List – II (Two–port parameters)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) I_1, I_2</td>
<td>1. z</td>
</tr>
<tr>
<td>(b) V_1, V_2</td>
<td>2. y</td>
</tr>
<tr>
<td>(c) V_1, I_2</td>
<td>3. g</td>
</tr>
<tr>
<td>(d) I_1, V_2</td>
<td>4. h</td>
</tr>
</tbody>
</table>

(A) $a - 1, b - 2, c - 3, d - 4$ (B) $a - 4, b - 2, c - 3, d - 1$
(C) $a - 1, b - 3, c - 2, d - 4$ (D) $a - 4, b - 3, c - 2, d - 1$

86. Consider the following statements:
The inter element spacing of
1. More than λ in array antenna will produce grating lobes in unscanned condition.
2. More than $\lambda / 2$ but less than λ in array antenna will produce grating lobe under scanned condition
3. Less than $\lambda / 2$ in array antenna will not produce any grating lobe
4. More than 1.5λ in array antenna will not produce any grating lobe
Which of the above statements are correct?
(A) 1 and 2 only (B) 3 and 4 only (C) 1, 2 and 3 only (D) 1, 2, 3 and 4
87. The frequency response $H(\Omega)$ of a system for impulse sequence response $h[n] = \delta[n] + \delta[n-1]$ is

(A) $H(\Omega) = 2\cos\left(\frac{\Omega}{2}\right) - \Omega$ (B) $H(\Omega) = \cos\Omega - \Omega$

(C) $H(\Omega) = \cos\Omega - \frac{\Omega}{2}$ (D) $H(\Omega) = 2 - \frac{\Omega}{2}$

88. The below network contains resistors and controlled sources. $G_{12} = \frac{V_2}{V_1}$ is

(A) $-\frac{4}{5}$ (B) $-\frac{3}{5}$

(C) $-\frac{2}{5}$ (D) $-\frac{1}{5}$

89. The diffusion length for holes L_p, is the

(A) Average distance which an injected hole travels before recombining with an electron

(B) Maximum distance travelled by a hole before recombining with an electron

(C) Length of the region in which diffusion takes place

(D) Minimum distance travelled by a hole before it recombines with an electron

90. The transfer functions for the state representation of continuous time LTI system:

\[\dot{q}(t) = Aq(t) + bx(t) \]

\[y(t) = cq(t) + dx(t) \]

is given by

(A) $c(sI - A)^{-1} b + d$ (B) $b(sI - A)^{-1} b + d$

(C) $c(sI - A)^{-1} b + d$ (D) $d(sI - A)^{-1} b + c$

91. Unit step response of the system described by the equation $y(n) + y(n-1) = x(n)$ is

(A) $\frac{Z^2}{(Z+1)(Z-1)}$ (B) $\frac{Z}{(Z+1)(Z-1)}$

(C) $\frac{Z+1}{Z-1}$ (D) $\frac{Z(Z-1)}{(Z+1)}$
92. In the case of ABCD parameters, if all the impedances in the network are doubled, then
 (A) A and D remain unchanged, C is halved and B is doubled
 (B) A, B, C and D are doubled
 (C) A and B are doubled, C and D are unchanged
 (D) A and D are unchanged, C is doubled and B is halved

93. The value of a resistance as measured by a Wheatstone bridge is 10.0 K using a voltage source of 10.0 V. The same resistance is measured by the same bridge using 15.0 V. The value of resistance is
 (A) 15.0 KΩ (B) 15.5 KΩ (C) 16.6 KΩ (D) 10.0 KΩ

94. An elliptically polarized wave travelling in the positive Z-direction in air has x and y components
 \[E_x = 3 \sin(\omega t - \beta z) \text{V/m} \]
 \[E_y = 6 \sin(\omega t - \beta z + 75^\circ) \text{V/m} \]
 If the characteristic impedance of air is 360Ω, then the average power per unit area conveyed by the wave is
 (A) 8 W/m² (B) 4 W/m² (C) 62.5 mW/m² (D) 125 mW/m²

95. Which of the following pair of values of L and C should be used in a tank circuit to obtain a resonant frequency of 8 kHz? The bandwidth is 800 Hz and winding resistance of the coil is 10 ohms.
 (A) 2 mH and 1μF (B) 10 H and 0.2μF
 (C) 1.99 mH and 0.2μF (D) 1.99 mH and 10μF

96. Number of state variables of discrete time system, described by
 \[y[n] - \frac{3}{4} y[n-1] + \frac{1}{8} y[n-2] = x[n] \]
 is
 (A) 2 (B) 3 (C) 4 (D) 1

97. Consider the following statements:
 1. Power factor will be unity
 2. Current in circuit will be maximum
 3. Current in circuit will be minimum
 Which of these statements are correct with respect to resonance in R–L–C parallel circuit?
 (A) 1, 2 and 3 (B) 1 and 2 only (C) 2 and 3 only (D) 1 and 3 only
98. The mathematical model of the below shown signal is
 (A) \(x(t) = u(2 + t) \)
 (B) \(x(t) = u(t - 2) \)
 (C) \(x(t) = u(2 - t) \)
 (D) \(x(t) = u(t - 1) \)

99. When waves travel along a transmission line from a generator to a load, through which region is power transmission taking place?
 (A) Only through the conducting region
 (B) Only through the non–conducting regions
 (C) Both through conducting and non–conducting regions
 (D) Through the conducting regions for half a cycle and through the non–conducting regions for the next half cycle

100. The current in the below network is
 (A) \(t - 1 + e^{-t} u(t) \)
 (B) \(t^2 - t + e^{-t} u(t) \)
 (C) \(t + 1 + e^{-t} u(t) \)
 (D) \(t - 1 - e^{-t} u(t) \)

Directions: Each of the next twenty (20) items consists of two statements, one labeled as the ‘Assertion (A)’ and the other as ‘Reason (R)’. You are to examine these two statements carefully and select the answers to these items using the codes given below

Codes:
 (A) Both A and R are individually true and R is the correct explanation of A
 (B) Both A and R are individually true but R is not the correct explanation of A
 (C) A is true but R is false
 (D) A is false but R is true

101. **Assertion (A)** : A linear system gives a bounded output if the input is bounded
 Reason (R) : The roots of the characteristic equation have all negative real parts and the response due to initial conditions decay to zero as time \(t \) tends to infinity
102. **Assertion (A)** : The system described by \(y^2(t) + 2y(t) = x^2(t) + x(t) + c \) is a linear and static system
Reason (R) : The dynamic system is characterized by differential equation

103. **Assertion (A)** : When five percent of silver is added to copper to form an alloy, the electrical resistivity of the alloy is more than that of pure copper
Reason (R) : Silver has a higher value of resistivity than that of copper

104. **Assertion (A)** : Magnetic susceptibility value of an antiferromagnetic substance at 0° K is zero
Reason (R) : At 0° K, atomic magnetic moments are frozen with magnetic dipoles pointing in random directions

105. **Assertion (A)** : A thermocouple is an active component
Reason (R) : It is activated by a temperature gradient

106. **Assertion (A)** : Synthesis problem is not unique in the sense that we may be able to find more than one network which provides prescribed response
Reason (R) : The problem of synthesis deals with the design and specification of the network

107. **Assertion (A)** : In an intrinsic semiconductor, electron mobility in conduction band is different from hole mobility in valence band
Reason (R) : In an intrinsic semiconductor, electrons and holes are created solely by thermal excitation across the energy gap

108. **Assertion (A)** : At very high temperatures, both p and n–type semiconductors behave as intrinsic semiconductor
Reason (R) : In n–type semiconductor the majority carriers are electrons and in a p–type semiconductor the majority carriers are holes, whereas in an intrinsic semiconductor the number of holes and electrons are equal

109. **Assertion (A)** : In an intrinsic semiconductor, the concentration of electrons and holes increases with increase in the temperature
Reason (R) : Law of mass action holds good in case of semiconductors

110. **Assertion (A)** : Capacitance between two parallel plates of area ‘A’ each and distance of separation ‘d’ is \(\varepsilon A/d \) for large A/d ratio
Reason (R) : Fringing electric field can be neglected for large A/d ratio
111. \textbf{Assertion (A)}: In solving boundary value problems, the method of images is used.
\textbf{Reason (R)}: By this technique, conducting surfaces can be removed from the solution domain.

112. \textbf{Assertion (A)}: The velocity of light in any medium is slower than that of vacuum.
\textbf{Reason (R)}: The dielectric constant of the vacuum is unity and is lesser than that of any other medium.

113. \textbf{Assertion (A)}: To obtain high Q, a resonator should have a large ratio of volume to surface area.
\textbf{Reason (R)}: It is the volume that stores energy and it is the surface area that dissipates energy.

114. \textbf{Assertion (A)}: TEM (Transfer Electro Magnetic) waves cannot propagate within a hollow waveguide of any shape.
\textbf{Reason (R)}: For a TEM wave to exist within the waveguide, lines of H field must be closed loops which requires an axial component of E which is not present in a TEM wave.

115. \textbf{Assertion (A)}: Si is mainly used for making ICs and not Ge.
\textbf{Reason (R)}: In Si, SiO\textsubscript{2} layer which acts as an insulator can be formed for isolation purposes. Corresponding oxide layer cannot be formed in Ge.

116. \textbf{Assertion (A)}: The short–circuit current gain of a bipolar junction transistor, in common base configuration increases with increase in the reverse bias collector to base voltage.
\textbf{Reason (R)}: With increase in the reverse bias collector to base voltage, the effective base width decreases.

117. \textbf{Assertion (A)}: A bipolar junction transistor is basically a current amplifier.
\textbf{Reason (R)}: The most simplified model of a BJT has a current dependent current source in its output circuit, whose magnitude directly depends upon the input current.

118. \textbf{Assertion (A)}: If we have two p–n–p and n–p–n transistors of identical construction, the n–p–n transistor will have better frequency response characteristic compared to the p–n–p transistor.
\textbf{Reason (R)}: The diffusion constant of electron is higher than that of holes.

119. \textbf{Assertion (A)}: Many semiconductors where minimum energy in the conduction band and maximum energy in the valence band occur at the same value of \(\vec{k} \) (wave vector), are preferred for optical lenses.
120. **Assertion (A)** : At low temperature, the conductivity of a semiconductor increases with increase in the temperature.

Reason (R) : The breaking of the covalent bonds increases with increase in the temperature, generating increasing number of electrons and holes.